

KFKC INSTRUMENT CO.,LTD

Company Profile

KFKC INSTRUMENT, located in the West Industrial Part of Kaifeng City, with the area of more than 2000 square meters. Now we have more than 20 years manufacturing experience and mainly specialized in 4 categories products for industrial measurement instruments.

We are one of the most advanced enterprises on the China Measurement Industry. Our main products include Electromagnetic flow meter, Vortex Flow meter, Turbine Flow meter and different kinds of Throttling Devices. Quality control is Fundamental to our success, with high quality products and services; we have won high reputation in this field.

Recently, with the advanced technology, our products have reached the international level. Our company is well-established and reliable, until now we have cooperated with the well-known international companies such as ABB, SIEMENS, EMG-DREHMO and THOMME etc...

Meeting Room

Certificates

Distributor in Pakistan

Project Case

化工厂应用现场

中海油平台

冶炼厂应用现场

啤酒厂应用现场

污水处理厂现场

热力交换站

化工厂应用现场

制药厂储罐液位

药厂储药罐

MF

MF-Electromagnetic Flow Meter

DN	PN (MPa)	Dimension					Weight (kg)
		L	D	K	n	d	
10	4. 0	200	90	60	4	14	9. 5
15		200	95	65	4	14	15
20		200	105	75	4	14	15
25		200	115	85	4	14	15
32		200	140	100	4	18	18
40		200	150	110	4	18	20
50		200	165	125	4	18	22
65		200	185	145	8	18	26
80		200	200	160	8	18	26
100		250	220	180	8	18	29
125	1. 6	250	250	210	8	18	31
150		300	285	240	8	22	39
200		350	340	295	8	22	48
250	1. 0	450	395	350	12	22	65
300		500	445	400	12	22	88
350		550	505	460	16	22	110
400		600	565	515	16	26	130
450		600	615	565	20	26	140
500		600	670	620	20	26	160
600		600	780	725	20	30	270
700		700	895	840	24	30	435
800		800	1015	950	24	33	545
900		900	1115	1050	28	33	655
1000		1000	1230	1160	28	36	810
1200	0. 6	1200	1405	1340	32	33	875
1400		1400	1630	1560	36	36	1235
1600		1600	1830	1760	40	36	1555
1800		1800	2045	1970	44	39	2085
2000		2000	2265	2180	48	42	2610

MF

MF-Model Selection

MF										xxx	xx	x	x	x	x	x	x	xx
A	Caliber: the first two digits are the caliber's first and second digits, the third digit is the number of the zero																	
	No.	Caliber	No.	Caliber	No.	Caliber	No.	Caliber	No.	Caliber	No.	Caliber	No.	Caliber	No.	Caliber	No.	Caliber
	003	3	400	40	201	200	601	600	162	1600								
	006	6	500	50	251	250	701	700	182	1800								
	100	10	650	65	301	300	801	800	202	2000								
	150	15	800	80	351	350	901	900	222	2200								
	200	20	101	100	401	400	102	1000	242	2400								
	250	25	125	125	451	450	122	1200	262	2600								
	320	32	151	150	501	500	142	1400										
B	Nominal Pressure:																	
	No.	Pressure Specification				No.	Pressure Specification											
	06	0.6MPa(DN10-20000)				10	1.0MPa(DN10-20000)											
	16	1.6MPa(DN10-20000)				25	2.5MPa(DN10-20000)											
	40	4.0MPa(DN10-20000)				xx	sprecal pressure											
C	Liner material:																	
	No.	Liner material				No.	Liner material											
	1	PTEF				2	Neoprene											
	3	Polyurethane				4	F46											
	5	PFA																
D	Electrode Material																	
	No.	Electrode Material		No.	Electrode Material		No.	Electrode Material										
	1	Stainless steel316L		2	Hastelloy HC		3	Hastelloy HB										
	4	T1		5	Ta		6	Pt										
	7	Coated tungsten carbide																
E	Electrode Form																	
	No.	Electrode Form		No.	Electrode Form		No.	Electrode Form	Scraper Electrode, detachable									
	1	Standard		2	Scraper Electrode		3	Detachable Electrode	Electrode Just for DN(300-2000)									
F	Accessory																	

MF

MF-Flow Velocity (m/s)

DN (mm)	Flow Velocity (m/s)							
	0.01	1	2	3	4	5	10	15
10	0.0028	0.2827	0.5655	0.8482	1.1310	1.4137	2.8274	4.2412
15	0.0064	0.6362	1.2723	1.9085	2.5447	3.1809	6.3617	9.5426
20	0.0113	1.131	2.2619	3.3929	4.5524	5.6549	11.3097	16.9646
25	0.0177	1.7671	3.5343	5.3014	7.0686	8.8357	17.6715	26.5072
40	0.0452	4.5239	9.0478	13.5717	18.0956	22.6195	45.2389	67.8584
50	0.0707	7.0686	14.1372	21.2058	28.2743	35.3429	70.6858	106.0290
65	0.1195	11.946	23.8918	35.8377	47.7836	59.7295	119.4590	179.1890
80	0.181	18.0956	36.1911	54.2867	72.3823	90.4779	180.9560	271.434
100	0.2827	28.274	56.5487	84.8230	113.0973	141.3720	282.7430	424.115
150	0.6362	63.617	127.2350	190.8520	254.4690	318.0860	636.173	954.259
200	1.131	113.097	226.1950	339.2920	452.3893	565.4870	1130.973	1696.46
250	1.7671	176.715	353.4290	530.1440	706.8583	883.5730	1767.146	2650.719
300	2.5447	254.469	508.9380	763.4070	1017.876	1272.3450	2544.690	3817.035
350	3.4636	346.361	692.7210	1039.0820	1385.442	1731.8030	3463.606	5195.409
400	4.5239	452.389	904.7790	1357.1680	1809.557	2261.9470	4523.893	6785.84
450	5.7256	572.555	1145.1110	1717.6660	2290.221	2862.7760	5725.553	8588.329
500	7.0686	706.858	1413.7170	2120.575	2827.433	3543.292	7068.584	10602.88
600	10.079	1017.876	2035.7520	3053.628	4071.504	5089.38	10178.76	15268.14
700	13.854	1385.442	2035.752	4156.327	5541.769	6927.212	13854.42	20781.64
800	18.096	189.557	2770.885	5428.672	7238.23	9047.787	18095.57	27143.36
900	22.902	2290.221	3619.115	6870.663	9160.884	11451.11	22902.21	34353.32
1000	28.274	2827.433	4580.442	8482.30	11309.73	17137.17	28274.33	42411.5
1200	40.715	4071.504	5654.867	12214.51	16286.02	20357.52	40715.04	61072.56
1400	55.418	5541.769	8143.008	16625.30	22167.08	27708.85	55417.69	83126.54
1600	72.382	7238.23	11083.54	21714.69	28952.92	36191.15	72382.3	108573.4
1800	91.609	9160.884	14476.46	27482.65	36643.54	45804.42	91608.84	137413.3
2000	113.1	11309.73	18321.77	33929.20	45238.93	56548.67	113097.3	169646.0

MF

MF-Electrode Material Selection

Electrode Material	Corrosion Resisting Property
Stainless Steel	Used for measuring water, waste water, inorganic acid, organic acid or other corrosive medium.
Hastelloy B	Good corrosion resistance of different concentration of hydrochloric acid under boiling point, resist the corrosion of non-oxidizing acid, alkali, non-oxidizing salt solution, such as sulfuric acid, phosphoric acid, organic acid, etc..
Hastelloy C	Resist the corrosion of oxidizing acid, such as nitric acid, mixed acid, the mixture of chromic acid and sulfuric acid, oxidizing salt like Fe ⁺⁺⁺ , Cu ⁺⁺ or other oxidants such as hypochlorite solution above ordinary temperature and seawater.
Tungsten Carbide	Used for measuring non-corrosiveness or strong abrasive liquid.
Titanium	Used for measuring seawater, kinds of chloride, pyrochloride, oxidizing acid (including nitrosonitric acid) and organic acid-base. Not suitable for measuring pure reducibility acid (e.g. vitriol, hydrochloric acid). Note: if there is oxidizing agent in acid, corrosion resistance will be greatly decreased.
Tantalum	Have excellent corrosion resistance, as much as glass. can be used for measuring every chemical medium including boiling hydrochloric acid and vitriol below 175 °C , but there is exception of hydrofluoric acid, fuming acid and alkali.
Platinum	For measuring kinds of acid, alkali and salt, except aqua regia.
Monel	A kind of Nickel-copper alloy, suitable for every alkaline liquid.

MF

MF-Lining Material Selection

Liner material	Main performances	Applicability
Polytetrafluoroethylene (PTFE)	1.It is a plastic material with the stablest Chemical properties, resist the corrosion of Boiling Hydrochloric acid, sulfuric acid, nitric acid, aqua regia,Concentrated alkali and many kinds of organic solvent, unable to resist the corrosion of chlorine trifluoride, high Temperature vanadyltrifluoride, high flow-rate Liquid fluorine, liquid oxygen and ozon; 2.Poor abrasion resistance; 3.Poor ability of anti-negative pressure.	1.100℃, 150℃(special order required); 2.Strong corrosive medium like concentrated acid , alkali, etc.; 3.Sanitary medium.
polychloroprene rubber (Neoprene)	1.Excellent elasticity, high degree of tensile strength,good wear resistance; 2.Able to resist the corrosion of generally low concentration acid, alkali and salt, unable to resist that of the oxidative medium.	1.80℃,120℃(special order required); 2.General water, polluted water, weak wear ability mud and ore pulp.
Polyurethane rubber (PU)	1.Excellent wear resistance (ten times of the natural rubber's); 2.Poor abrasion resistance of acid and alkali; 3.Not able to work with water mixed with organic solvent.	1.<80℃; 2.Middle and strong wear ability ore pulp, coal pulp, mud, etc..
PFA	Having the same abrasion resistance with PTFE.Having strong ability of load pressure resistance.	1.Below 220 deg C 2.Applicable in state of load pressure.
F46	1.Have the same abrasion resistance with PTFE. 2.Resistable for low abrasion. 3.Having strong resistance to load pressure.	1.Below 220 deg C 2.The same as PTFE. 3.Applicable in mediums of low abrasion.

LWGY-Turbine Flow Meter

Material: Stainless Steel

DN range (mm): DN8-DN500

Output: pulse/current4-20mA/RS-485/Hart

Accuracy: 0.5%, 1.0%

Medium: liquid

Flow range (mm): 0.25-4000

Power supply: 12+-10% VAC / 24+-10% VAC / 24VDC

Medium temperature (centigrade): -20-80

Environment temperature (centigrade): -20-50

Atmospheric pressure: 86-106KPa

Nominal Pressure: 1.6 – 42 MPa

Anti-Explosion Grade: IaIICT4, dIIBT4

LWGY

LWGY

LWGY-Working Principle

Sensor is based on the torque balance theory, when the liquid flows through the sensor, in the special structure of rectifiers (D1) to be rectified under the action and speed, due to turbine blades and fluid flow into a certain angle, in accelerating the fluid under the action of the impeller (D2) produce rotational torque to overcome friction torque and fluid resistance, the turbine begins to rotate, to a certain flow range, the turbine's rotational speed and flow rate is proportional to volume flow. Impeller rotating-cut magnetic lines, periodically changing the coil (D3) in the magnetic flux, so that both ends of the coil sensor and the volume of fluid flow is proportional to the pulse signal, the signal after amplification, filtering, reconstructive surgery into the Flow Totalizer (A) to computing processing, and display on the LCD on the spot.

LWGY-turbine flowmeter

LWGY-Fow Rate

item type	inside nominal diamete r (mm)	Flow rate (m ³ /h)	Liquid temperature (°C)	Press (Mpa)
LWGY-10	10	0.2-1.2	-20~+120	
LWGY-15	15	0.6-6		
LWGY-25	25	1-10		1.6
LWGY-40	40	2-20		
LWGY-50	50	4-40		
LWGY-80	80	10-100		
LWYG-100	100	20-200		6.3
LWGY-150	150	30-300		2.5
LWGY-200	200	80-800		

LWGY-Turbine Flowmeter

LWGY-Installation Size

diameter (mm)	4	6	10	15	20	25	32	40	50	65	80	100	125	150	200
L (mm)	50	50	50	75	85	100	120	140	150	175	200	220	250	300	360
H (mm)	145	145	165	170	175	180	220	178	252	270	287	322	340	367	415

LUGB-Technical Indicators

medium	Liquid, gas, steam (single phase medium or medium that can be considered a single phase) Saturated steam in the dry $\geq 85\%$, can be considered a single-phase medium				
Medium temperature(°C)	-40~+300; 350~450				
Medium pressure	1. 6Mpa 2. 5Mpa 4. 0Mpa $\geq 4. 0\text{Mpa}$				
Allow vibration acceleration	Capacitive sensor:1.0~2.0g Piezoelectric sensor: $\leq 0.2\text{g}$				
uncertainty	1. 0 1. 5 2. 5				
Range ratio	8:1 10:1 15:1				
Flow range	liquid: 0.35~7.0m/s gas: 5.0~60.0m/s steam: 6.0~70.0m/s				
Specifications	Full tube type	Flange specifications DN15-DN300			
	Plug in	DN200-DN1500			
Material	304ss				
Reynolds number	Normal: $2 \times 10^3 \sim 7 \times 10$ Extended: $1 \times 10^7 \sim 10^8$				
Drag coefficient	Full tube type: $C_d \leq 2.6$				
Level of protection	normal type: IP65 Diving type: IP68				
Explosion-proof	Intrinsically safe: EX (ia) II CT2-T5 Flameproof type: Exd II BT2-T5				
Environmental conditions	Ambient temperature	-40°C~+55°C (Non-explosion place) -25°C~+55°C (Explosion-proof places)			
	Relative humidity	$\leq 90\%$			
	Atmospheric pressure	86~106kPa			
Power supply	Pulse type: 12VDC~+24VDC Current type: 12VDC~+24VDC 4~20mA Battery powered: 3.6V				
output signal	Frequency pulse signal: 2~3000Hz Low level $\leq 1\text{V}$ High level $\geq 5\text{V}$				
	2 wires : 4~20mA Explosion-proof load $\leq 300\Omega$ Non-explosion-proof load $\leq 500\Omega$				

Vortex Flowmeter

LUGB/E-Selection Table

Type spectrum				Description
LU				Vortex flow meter
G				sensor
Detection method	B			
	E			
Connection way		1	Only for full tube type	
		2	Only for full tube type	
		3	Only for insert type	
		4	Only for insert type	
medium		2		
		3		
		4		
Nominal diameter		02		
		...		
		30	DN25 ... DN300	
Working environment	—	P	unit: mm	
		B	normal type	
output signal		1	Explosion-proof	
		2	Pulse output	
		3	4~20mA Current output, LCD display	
		4	RS-485	
Selection instructions	E.g: LUGE2405-P2 Full tube type capacitive vortex flow meter, Flange card connection, The medium is steam Diameter is DN50, ordinary, 4~20mA			

Vortex Flowmeter

LUGB/E-Diameter of the sensor

diameter DN mm	25	32	40	50	65	80	100	125	150	200	250
Tag number	02	03	04	05	06	08	10	12	15	20	25
diameter DN mm	300	350	400	450	500	600	700	800	1000	1200	1500
Tag number	30	35	40	45	50	60	70	80	A0	A2	A5

Vortex Flowmeter

LUGB/E-Selection of flow range

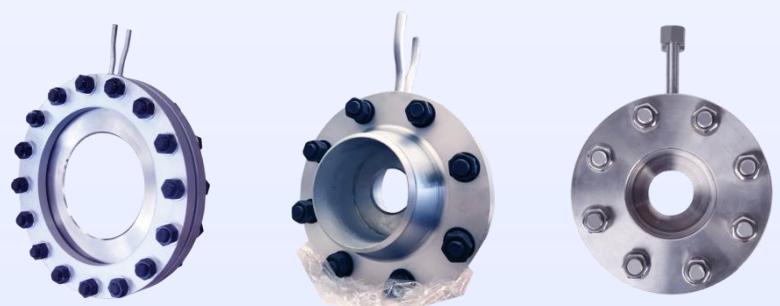
Traffic calculation category	Calculation formula	Measuring range	Symbol Description
The lower limit flow rate determined by the working density: Q_p	$Q_p = Q_{\infty} \cdot \sqrt{\rho_{\infty} / \rho_{\infty}}$	Refer table below	Q_{∞} : Volume flow at operating density (m^3/h) Q_{∞} : Volume flow at air reference density (m^3/h) ρ_{∞} : The density of the measured medium (Kg/m^3) ρ_{∞} : Air reference density, $= 1.205 \text{ Kg/m}^3$ Q_v : Flow volume of the kinematic viscosity (m^3/h) Q_0 : The flow rate at the reference medium viscosity (m^3/h) ν : Measured medium operating viscosity (m^3/s) ν_0 : The kinematic viscosity of the reference medium ($1 \times 10^{-6} \text{ m}^2/\text{s}$) η : Dynamic viscosity (centipoise) P_{∞} : Working medium pressure = gauge pressure + atmospheric pressure (Mpa) T_{∞} : Condition of medium temperature $273.15 + T_{\infty}$ Q_s : The volume flow under the standard condition ($\text{N m}^3/\text{h}$) G : Mass Flow (Kg/h) D : Pipe diameter(m) Re : Reynolds number V : Fluid average speed(m/s)
The lower limit flow rate determined by the kinematic viscosity of the working condition: Q_v	$Q_v = Q_0 \cdot \nu / \nu_0$ $\nu = m / \eta$	Refer table below	
The gas volume is converted to the flow rate	$Q_{\infty} = \frac{0.101}{0.10132 + P_{\infty}} \cdot \frac{273.15 + T}{273.15} \cdot Q_s$	Refer table below	
Calculation of Mass Flow Rate	$Q_s = \frac{G}{\rho_{\infty}}$	Refer table below	
Meet the Reynolds number range requirements lower limit flow : Q_{Re}	$D = \frac{Re \cdot \nu}{V}$	$2 \times 10^4 \leq Re \leq 7 \times 10^6$	
Calculate the normal flow range by flow rate	$V =$	liquid : $0.37 \sim 7.0 \text{ m/s}$ gas , steam : $4.0 \sim 60.0 \text{ m/s}$	

Vortex Flowmeter

LUGB/E-Flow Range

Vortex Flowmeter

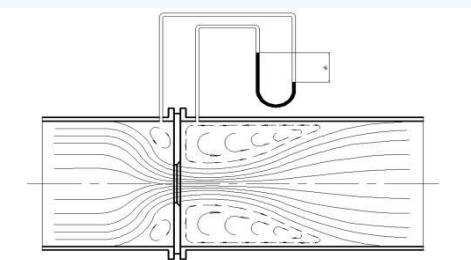
Diameter (mm)	liquid		gas	
	Flow range (m³/h)	Output frequency range (Hz)	Flow range (m³/h)	Output frequency range(Hz)
15	1.2~6	118~590	4~28	400~2700
20	1.5~10	56~374	6~40	224~1500
25	2~16	41~330	8~50	170~1030
32	1.8~20	18~200	10~120	97~1172
50	3.5~40	9~105	35~300	92~735
65	7.5~70	9~83	50~500	59~588
80	12~130	7~80	80~800	50~493
100	18~160	6~49	120~1200	36~370
125	25~250	4~40	180~1800	30~300
150	50~400	4~38	320~2800	31~270
200	70~700	3~30	560~6000	22~240
250	120~1200	2.5~25	890~8000	18~170
300	200~2000	2.4~24	1360~12000	17~150
(300)	200~1800	11~98	1560~15000	83~830
(400)	350~3000	11~92	2750~27000	83~836
(500)	500~4000	10~79	4300~43000	84~834
(600)	700~5600	9.5~76	6200~61000	83~830
(800)	900~7200	7~55	11000~110000	83~829
(1000)	1300~12000	6.3~56	17000~170000	83~820
>(1000)	协议		协议	

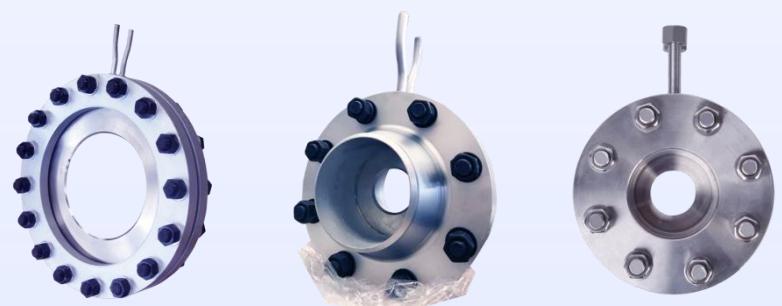


Orifice Plate

Orifice Plate

The throttling device associated with the differential-pressure instrument is used to measure the single-phase fluid in the closed ring pipe, the principle of it is based on Bernoulli's equation and the fluid continuity equation

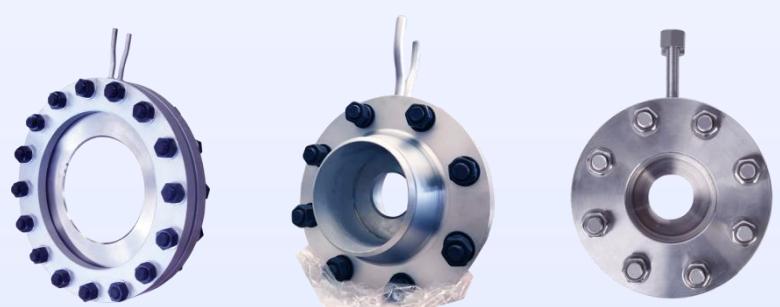



Orifice Plate

Principle:

The throttling device shall be assembled into the ring pipe, when the fluid flows through the throttling element, the differential-pressure will appear between the upstream and downstream sides, See figure 1.

Orifice Plate

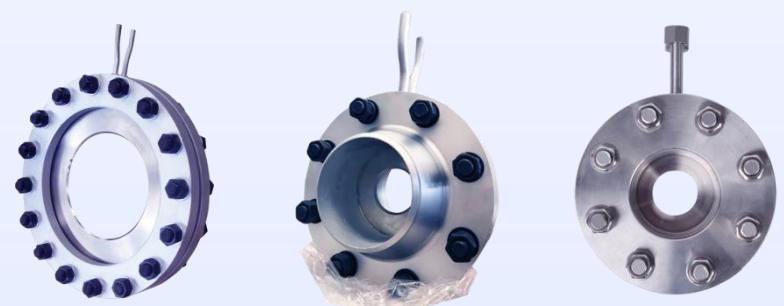

Orifice Plate

Orifice Plate

The requirements to the piping

1. The throttling device should be assembled between the two sections of straight pipes with equivalent cross-section, the deviation of the diameters of the nipples at upstream and downstream and the average inside diameter in the length range of 2 DN at least from the upstream end face of the orifice should be $\leq 0.3\%$.

2. The medium must be full of the pipe near the throttling device (including the front and rear nipples); If it is necessary to install an isolating valve, the gate valve should be selected and it must keep full open during the operation; If it is necessary to install a regulating valve, it should be installed after the nipple of 5DN at the downstream



Orifice Plate

3. In the range of the nipples of the restricting elements at up and down streams, there should be no prominent washer in the pipe; Any situation that interferes the flow should be prevented. (e.g. the input and output of the fluid)
4. At the upstream and downstream of the throttling device, it must be ensured that the minimum nipple and the mode of the resistant parts at the upstream is relevant to the diameter ratio of the restricting parts.

The length of the minimum nipple at upstream and downstream sides of the throttling device

Orifice Plate

AF/

Metal Tube Rotameter

product feature	
Measuring Medium	Liquid, gas, steam etc
Environment Temperature	-25°C~+100°C, High Temperature Type:300°C
Accuracy	Normal type:±2.5%, high accuracy type:±1.5%
Medium Viscosity	DN15:≤5mPa.s ≤30mPa.s; DN25:≤250mPa.s; DN50-150:≤300mPa.s
Flow Range Ratio	10:01
Power Supply	24VDC,3.6V lithium battery power
Power voltage influence	≤±0.1%F.S
Load Influence	≤±0.1%
Max Working Pressure	DN15~DN50:4.0MPa; DN80~DN150:1.6MPa
Pipe Connection	Flange, Thread, Quick coupling
Shell	Aluminum Alloy
Protection Class	IP65,IP67
Explosion Proof	ExalICT1~T6

AF/

Metal Tube Rotameter

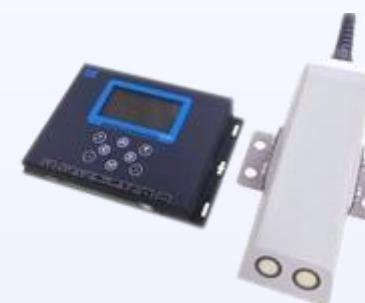
Flow Range							
Diameter (mm)	work number	flow range			Pressure loss kpa		
		Water L/h		Air m3/h	Water Kpa		Air
		normal type	Anti-corrosion type	normal type	normal type	Anti-corrosion type	
15	1A	2.5~25	—	0.07~0.7	6.5	—	7.1
	1B	4.0~40	2.5~25	0.11~1.1	6.5	5.5	7.2
	1C	6.3~63	4.0~40	0.18~1.8	6.6	5.5	7.3
	1D	10~100	6.3~63	0.28~2.8	6.6	5.6	7.5
	1E	16~160	10~100	0.48~4.8	6.8	5.6	8
	1F	25~250	16~160	0.7~7.0	7	5.8	10.8
	1G	40~400	25~250	1.0~10	8.6	6.1	10
	1H	63~630	40~400	1.6~16	11.1	7.3	14
25	2A	100~1000	63~630	3~30	7	5.9	7.7
	2B	160~1600	100~1000	4.5~45	8	6	8.8
	2C	250~2500	160~1600	7~70	10.8	6.8	12
	2D	400~4000	250~2500	11~110	15.8	9.2	19
40	4A	500~5000	300~3000	12~120	10.8	8.6	9.8
	4B	600~6000	350~3500	16~160	12.6	10.4	16.5
50	5A	630~6300	400~4000	18~180	8.1	6.8	8.6
	5B	1000~10000	630~6300	25~250	11	9.4	10.4
	5C	1600~16000	1000~10000	40~400	17	14.5	15.5
80	8A	2500~25000	1600~16000	60~600	8.1	6.9	12.9
	8B	4000~40000	2500~25000	80~800	9.5	8	18.5
100	10A	6300~63000	4000~40000	100~1000	15	8.5	19.2
150	15A	20000~100000	—	600~3000	19.2	—	20.3

AF/

Metal Tube Rotameter

Model selection

PHLZ	X	X	X	X	X	X
Indicator	code					
local indicator	Z					
LCD indicator with output	D					
nominal caliber	code					
DN15		-15				
DN25		-25				
DN40		-40				
DN50		-50				
DN80		-80				
DN100		-100				
DN150		-150				
structure	Code					
bottom-top	/					
Left-right (horizontal)	H1					
right-left (horizontal)	H2					
side-side	AA					
bottom-side	LA					
thread connection	S					
quick coupling connection	M					
body material	Code					
304SS	R4					
316SS	R6					
316LSS	R6L					
hastelloy C	Hc4					
Titanium	Ti					
liner F46(PTFE)	F					
indicator type	Code					
linear indicator	M7					
nonlinear indicator(local indicator display instantaneous flow)	M9					
combination function	Code					
24VDC;remote transfer 4~20mA standard current signal	S					
24VDC;remote transfer 4~20mA,local LCD display instantaneous & accumulative flow	Z					
local lithium battery power ;local LCD display instantaneous & accumulative flow	D					
added function	Code					
measuring tube with thermal preservation / heat insulation jacket	T					
measure medium temperature higher than 120.C	HT					



Ultrasonic flow meter

HIGH LIGHTS

- Contact Doppler Ultrasonic Velocity and Flow Measurement Technology
- Excellent measurement accuracy and data stability
- Wide flow rate range: 0.02m/s to 5m/s
- for calibration for long-term use
- Linearity measurement, factory calibrated, no need
- rivers, and pipelines
- Measures the flow of artificial or natural channels,
- RS485 (Modbus), 4-20mA output

Ultrasonic flow meter

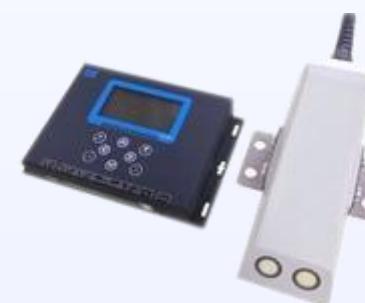


Ultrasonic flow meter

HIGH LIGHTS

- No mechanical rotating parts, there is no problem such as mud plug or water grass, sundries, etc.
- Open channel and closed pipe special flow algorithm
- Velocity area method flow measurement, free to set cross-section water level relationship
- Industrial design of fluid mechanics has little effect on the water body shape and does not affect the measurement accuracy
- IP68 waterproof case, able to work long hours in harsh environments

Ultrasonic flow meter



Ultrasonic flow meter

HIGH LIGHTS

- Provides computer configuration and data real-time observation software
- Easy docking of existing hydrological telemetry systems
- Easy to install without fixing section

Ultrasonic flow meter

Ultrasonic flow meter

Ultrasonic flow meter

PRODUCT DESCRICTION

DX-LSX-1 Doppler Ultrasonic Flow Meter is based on Doppler ultrasonic speed measurement. It adopts DSP technology and advanced spectrum analysis algorithm. It is designed for water flow rate and flow measurement.

It does not have rotating parts such as rotating pulp and bearings. It uses Doppler technology to detect flow velocity, no friction, no inertia, measuring point in front of the body, does not destroy the flow field, has high measurement accuracy, wide range, sensitive sensing, linear flow measurement, Not afraid of sediment, floating debris, intuitive readings, easy operation, not easy to damage and so on.

DX-LSX-1 Doppler ultrasonic flow meter supports RS485 (Modbus), 4-20mA output, and can customize the communication protocol according to customer's requirements.

Ultrasonic flow meter

Ultrasonic flow meter

PRODUCT DESCRICTION

The advanced spectrum analysis algorithm can perform statistical analysis on the flow velocity of the water to be measured, and can provide accurate data statistic f the measurement target, such as instantaneous flow velocity, average flow velocity, real-time water level, instantaneous flow, and cumulative flow. Doppler ultrasonic flow meter casing is made of PVC material, equipment protection grade IP68, can easily deal with various harsh environments.

The DX-LSX-1 Doppler Ultrasonic Flowmeter can be used to monitor the level, velocity, and flow of artificial or natural channels, rivers, hydroelectric plants, and urban underground pipe networks. It is only necessary to fix the device to the bottom of the section to be measured, and extremely high measurement accuracy can be obtained whether it is a full pipe or a non-full pipe.

